An assessment of foetal dose due to CT pulmonary angiography for suspected maternal pulmonary embolism

Susan Doshi¹, Ian Negus¹, Jenny Oduko²

1. United Bristol Healthcare Trust

2. Royal Surrey County Hospital, Guildford

Overview of presentation

Background – Aims of project Materials and Methods – Phantom & scanning protocols Results - Comparisons: Literature - V/Q - Different scanners Scan protocol Conclusions

Venous thromboembolism (VTE)

- DVT/PE is ~5 times more common in pregnancy
- It affects ~1 in 1000-2000 pregnancies
- Symptoms generally non-specific
 Treatment has associated risk

BTS Guidelines: Imaging

Leg ultrasound - if DVT confirmed, begin treatment CTPA is recommended as initial lung imaging technique Ventilation/Perfusion (V/Q) may be used instead

British Thoracic Society Guidelines for the Management of Suspected Acute Pulmonary Embolism, Thorax 2003 **58:** 470-484

BTS Guidelines: Pregnancy

 Current practice based on extrapolation from non-pregnant patients and observational studies
 Guidance on treatment in pregnance

Guidance on treatment in pregnancy is given

Aim of project

- Diagnosis of VTE remains controversial, particularly in pregnancy
- Decision making could be further informed by greater certainty of foetal dose
- Estimates using Monte Carlo exist
- We want to add to this information with phantom measurements

Description of phantom

Description of phantom

St George's¹ pregnant pelvis phantom
 Modelled on real patient at full term
 Rigid water-filled container
 + Rando phantom pelvis
 Chest of Bristol

- Rando phantom (male)
- + water-filled balloons for other anatomy!

¹Badr I et al. X-ray Pelvimetry – which is the Best Technique? *Clinical Radiology* 1997 52:136-141

Scan Protocol

Standard 'Embolism' protocol

- 120kV
- 100mAs (effective)
- -16×0.75 mm detectors
- 15mm feed per rotation
- 24.5cm scan length + 2cm overscan at each end

 Mean dose in water phantom = 390µGy
 Mean foetal dose ~ 100µGy

- Early pregnancy: use mean absorbed dose to assess risk (ICRP)
- Foetus at term organs fully developed
- Scatter from CT is a heterogeneous dose distribution
- Need to consider radiosensitivies of organs
- Use ICRP60 tissue weighting factors

Organ	H _T (μSv)	w _T	w _τ H _τ (μSv)
Gonads	211	0.20	42
Colon	226	0.12	27
Bone marrow (red)	123	0.12	15
Bladder	182	0.05	9
Stomach	66	0.12	8
Other organs + remainder			24
Effective dose = $\Sigma w_T H_T$:			125 µSv

Comparison with literature

	Monte Carlo ¹ (6 patients)	Phantom measurement
Max absorbed dose (µGy)	330-860	300
Mean absorbed dose (µGy)	50-130	100

¹ Winer-Muram H T et al. Pulmonary Embolism in Pregnant Patients: Fetal Radiation Dose with Helical CT *Radiology* 2002; 224:487-492

Comparison with V/Q

	Dose to foetus (µSv)	Dose to mother (µSv)
^{99m} Tc perfusion ¹	300	1000
^{81m} Kr ventilation ¹	<0.1	200
Total for V/Q	300	1200
CTPA	125	4200

¹ From *Notes for Guidance on the Clinical Administration of Radiopharmaceuticals and Use of Sealed Radioactive Sources;* ARSAC 1998

Other Scanners

- Standard protocol depends on scanner capabilities
- CTDI_w gives indication of dose for each protocol
- Some variation found in practice
- Each protocol requires optimisation

Variation with scan parameters

Geometry

Conclusions

Foetal dose from CTPA measured as 100µGy

- Represents an excess risk of fatal cancer to age 15 of 1 in 300,000¹
- Risk due to incorrect diagnosis is likely to be greater
- The radiation dose to the foetus does not preclude the use of CTPA

¹Excess risk of fatal cancer = 3×10⁻²Gy⁻¹ (from *Diagnostic Medical Exposure to Ionising Radiation of Pregnant Women,* NRPB 1993)